Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing.

نویسندگان

  • Nasim Annabi
  • Devyesh Rana
  • Ehsan Shirzaei Sani
  • Roberto Portillo-Lara
  • Jessie L Gifford
  • Mohammad M Fares
  • Suzanne M Mithieux
  • Anthony S Weiss
چکیده

Hydrogel-based bioadhesives have emerged as alternatives for sutureless wound closure, since they can mimic the composition and physicochemical properties of the extracellular matrix. However, they are often associated with poor mechanical properties, low adhesion to native tissues, and lack of antimicrobial properties. Herein, a new sprayable, elastic, and biocompatible composite hydrogel, with broad-spectrum antimicrobial activity, for the treatment of chronic wounds is reported. The composite hydrogels were engineered using two ECM-derived biopolymers, gelatin methacryloyl (GelMA) and methacryloyl-substituted recombinant human tropoelastin (MeTro). MeTro/GelMA composite hydrogel adhesives were formed via visible light-induced crosslinking. Additionally, the antimicrobial peptide Tet213 was conjugated to the hydrogels, instilling antimicrobial activity against Gram (+) and (-) bacteria. The physical properties (e.g. porosity, degradability, swellability, mechanical, and adhesive properties) of the engineered hydrogel could be fine-tuned by varying the ratio of MeTro/GelMA and the final polymer concentration. The hydrogels supported in vitro mammalian cellular growth in both two-dimensional and three dimensional cultures. The subcutaneous implantation of the hydrogels in rats confirmed their biocompatibility and biodegradation in vivo. The engineered MeTro/GelMA-Tet213 hydrogels can be used for sutureless wound closure strategies to prevent infection and promote healing of chronic wounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of synthesis of PVP hydrogel by irradiation

Background: A dressing often covers the wound to accelerate its healing. Hydrocolloid-type dressing to give better conditions for healing has been developed consisting of gelatin, pectin, water and hydrophilic polymer which promote healing. In recent years, much attention has been focused on the research and development of polymer hydrogels as biomaterials, such as contact lenses, wound dressin...

متن کامل

A highly adhesive and naturally derived sealant.

Conventional surgical techniques to seal and repair defects in highly stressed elastic tissues are insufficient. Therefore, this study aimed to engineer an inexpensive, highly adhesive, biocompatible, and biodegradable sealant based on a modified and naturally derived biopolymer, gelatin methacryloyl (GelMA). We tuned the degree of gelatin modification, prepolymer concentration, photoinitiator ...

متن کامل

Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds.

Ideally, rationally designed tissue engineering scaffolds promote natural wound healing and regeneration. Therefore, we sought to synthesize a biomimetic hydrogel specifically designed to promote tissue repair and chose hyaluronic acid (HA; also called hyaluronan) as our initial material. Hyaluronic acid is a naturally occurring polymer associated with various cellular processes involved in wou...

متن کامل

Grand challenge in Biomaterials-wound healing

Providing improved health care for wound, burn and surgical patients is a major goal for enhancing patient well-being, in addition to reducing the high cost of current health care treatment. The introduction of new and novel biomaterials and biomedical devices is anticipated to have a profound effect on the future improvement of many deleterious health issues. This publication will discuss the ...

متن کامل

The Effect of Transplantation of Collagen Hydrogel with Adipose-Derived Mesenchymal Stem Cells on Burn Wound Healing in Rats

Background: Cell therapy is one of the most challenging methods in the healing of burn wounds in the world. The present study aimed to determine the effect of collagen hydrogel with adipose-derived mesenchymal stem cells on burn wound healing in an animal model. Materials and Methods: The present study was experimentally performed on 24 Wistar rats. Burn wounds were created on the skin of rats...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 139  شماره 

صفحات  -

تاریخ انتشار 2017